ПАРАМЕТРЫ (10 класс)

- **1.** Выясните, при каких значениях параметра *a*:
 - а) уравнение $ax^2 6x + a + 8 = 0$ имеет два различных положительных корня;
 - б) уравнение $(a^2-1)x^2-(a^2-3a+2)x+a^2-a=0$ имеет более двух корней.

Ответ: a) 0 < a < 1; б) a = -1.

- **2.** Выясните, при каких значениях параметра a:
 - а) уравнение $(a+1)x^2 3ax + 4a = 0$ имеет два действительных корня, один из которых меньше 1, а другой больше 1;
 - б) уравнение $(a-2)x^2 2(a+3)x + 4a = 0$ имеет два действительных корня, один из которых меньше 2, а другой больше 3?

Ответ: a)
$$-1 < a < -0.5$$
; б) $2 < a < 5$.

3А. Найдите все значения a, при которых сумма $\log_a(\sin x + 2)$ и $\log_a(\sin x + 3)$ равна единице хотя бы при одном значении x.

Ответ:
$$2 \le a \le 12$$
.

3Б. Найдите все значения a, при которых сумма $\log_a\left(\frac{3+2x^2}{1+x^2}\right)$ и $\log_a\left(\frac{5+4x^2}{1+x^2}\right)$ больше единицы при всех значениях x?

Ответ:
$$1 < a \le 8$$

3В. При каких значениях a выражение $(\sin x)^{\lg(\sin x)-a^2}$ больше выражения $10^{\log_{100}(1-\cos^2 x)+\log_7 a}$ при всех допустимых значениях x?

Ответ:
$$0 < a \le 1$$
.

4. Найдите все такие значения a, при которых уравнение $\sqrt{x+2a-1} + \sqrt{x-a} = 1$ имеет решения.

Ответ:
$$a \in [0; \frac{2}{3}]$$

5. Найдите все такие значения a, при которых уравнение $\sqrt{a-\sqrt{x+2a}} = x-a$ имеет решения.

Ответ:
$$\{0\} \cup [3; +\infty]$$
.

6. Найдите все такие значения параметра a, при которых имеет решения система

$$\begin{cases} y + a \ge 2 | x - a |, \\ x + | y - a | = a + 1. \end{cases}$$

Ответ:
$$a \ge -\frac{1}{2}$$
.

7. Найдите все значения a, при которых уравнение $\sqrt{x^2 + 6x + 8} = \sqrt{a - 3x}$ имеет ровно одно отрицательное решение.

Ответ:
$$a \in \{-12, 25\} \cup (-12, -6) \cup [8, +\infty)$$
.

8. Найдите все такие значения a, при каждом из которых система неравенств

$$\begin{cases} (x-a)(ax-2a-3) \ge 0, \\ ax \ge 4 \end{cases}$$

не имеет решений.

Ответ:
$$-2 < a < 0$$
.

9. Найдите все значения параметра a, при каждом из которых система уравнений

$$\begin{cases} x^2 + y^2 = a^2, \\ xy = a^2 - 3a. \end{cases}$$

имеет ровно два решения

Ответ: a = 2, a = 6.

10. Найдите все значения параметра a, при каждом из которых система уравнений

$$\begin{cases} x^2 + ax = (2-a)y, \\ y^2 + (2-a)x = ay \end{cases}$$

имеет ровно 2 решения.

Ответ: $a \le 1$ или $a \ge 3$.

11. Найдите все значения параметра a, при которых система уравнений

$$\begin{cases} 2^{\ln y} = 4^{|x|}, \\ \log_2(x^4 y^2 + 2a^2) = \log_2(1 - ax^2 y^2) + 1 \end{cases}$$

имеет единственное решение.

Ответ: a = 1.

12. Найдите все значения параметра a, при каждом из которых система уравнений

$$\begin{cases} a(x^4 + 1) = y + 2 - |x|, \\ x^2 + y^2 = 4 \end{cases}$$

имеет единственное решение

Ответ: a = 4.

13. Найдите все значения параметра a, при каждом из которых любое решение уравнения $4\sqrt[3]{3,5x-2,5} + 3\log_2(3x-1) + 2a = 0$ принадлежит отрезку [1; 3].

Ответ: $-8,5 \le a \le -3,5$.

14. Найдите все такие значения параметра a, при каждом из которых уравнение $\log_{\frac{1}{a}}(\sqrt{x^2+ax+12}+1)\cdot\log_5(x^2+ax+13)+\log_a 3=0$ имеет ровно одно решение.

Ответ: $a = 4\sqrt{2}$.

15. Найдите все такие значения a, при которых имеет единственное решение система

$$\begin{cases} z\cos(x-y) + (2+xy)\sin(x+y) = z, \\ x^2 + (y-1)^2 + z^2 = a + 2x, \\ (x+y+a\sin^2 z)((1-a)\ln(1-xy) + 1) = 0. \end{cases}$$
 Other: $a = 1$.

16. Найдите все такие значения параметра a, при каждом из которых уравнение $2 \cdot 4^{\lg x} + 5 \cdot 25^{\lg x} = ax$, имеет решения.

Ответ: $a \ge 2\sqrt{10}$.

17. Найдите все такие значения параметра p, при которых неравенства $x(x+2) \le 3p$ и $x(x-4) + p \le 0$ имеют единственное общее решение.

Ответ: p = 0; p = 4.

18. Найдите все значения параметра a, при каждом из которых решения неравенства $\sqrt{a+\sqrt{x}}+\sqrt{a-\sqrt{x}} \le \sqrt{2}$ образуют промежуток, длина которого равна 0,25.

Ответ: 0,5.